Using an onboard source of energy (such as a battery, ultracapacitor, solar panel or any combination thereof), the electrodes will send an electrical current into the plasma, causing the plasma to push against the neutral (noncharged) air surrounding the craft, theoretically generating enough force for liftoff and movement in different directions (depending on where on the craft's surface you direct the electrical current).
The concept sounds far-fetched, but U.F. mechanical and aerospace engineering associate professor Subrata Roy plans to have a mini model ready to demonstrate his theory within the next year.
clipped from
If a professor at the University of Florida (U.F.) has his way, the first flying saucer to grace Planet Earth's skies isn't likely to come from outer space but rather from Gainesville, where the faculty member is drawing up plans to build a circular aircraft that can hover in the air like a helicopter without any moving parts or fuel.
In other words, it will look like a UFO, but will actually be more of an IFO—an identified flying object.
The saucer will hover and propel itself using electrodes that cover its surface to ionize the surrounding air into plasma. Gases (such as air, which has an equal number of positive and negative charges) become plasma when energy (such as heat or electricity) causes some of the gas's atoms to lose their negatively charged electrons, creating atoms with a positive charge, or positive ions, surrounded by the newly detached electrons.
 blog it